Quan creo un repte imagino també quins seran els camins que els alumnes faran servir per resoldre'l, però de tant en tant aquesta previsió queda curta i un es troba que algú de la classe ha estat capaç d'imaginar una nova via de resolució. Aquest és el cas del document que trobareu aquí sota, el seu autor va tenir la paciència de dibuixar totes les diagonals del decàgon, fet que no requereix uns especials coneixements matemàtics però, i el però és molt important, va aplicar una estratègia molt bona a l'hora de comptar les diagonals.
En comptes de fer un comptatge exhaustiu com fan la gran majoria d'alumnes, va comptar totes les que sortien del primer vèrtex, tot seguit va deduir que del segon, com que en ser adjacents no podien estar units per cap diagonal compartida, sortien les mateixes. A partir d'aquí va anar desplaçant-se pels vèrtexs consecutius tenint cura de restar sempre una per tal de tenir en compte les diagonals comuns. Un cop arribàvem a zero ja no calia comptar els vèrtexs restants. Una procés de raonament francament bo i que ens obliga a pensar que els nostres alumnes poden aportat a la classe de matemàtiques molt més del que ens pensem.
35
ResponElimina35
ResponElimina=D que dificiiil si no hi fiques els numeros no ho sabriaa!!
ResponElimina35.
ResponEliminabien, agrego mas letras, si soy el autor de la idea.
ResponEliminaY voy a la classe no lo digo chao.